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Abstract
We derive a parameter-based position–momentum uncertainty relation
involving the distance for a state to be displaced to become an orthogonal
state and the average rather than the variance of the momentum. This may be
useful when the variance of the momentum is infinite and thus the conventional
uncertainty relations involving variances provide no useful information.

PACS number: 0365B

How fast can a quantum state evolve to an orthogonal state under a unitary evolution governed
by a Schrödinger equation? This problem is fundamental to studying the speed of dynamical
evolution. It has been addressed by many authors, such as [1, 3, 5, 7, 8] among others. A
standard result is

Tψ�ψH � πh̄

2
. (1)

Here ψ is a pure state, H is the Hamiltonian, �ψH its standard deviation in the state ψ and
Tψ is the shortest time for ψ to evolve to an orthogonal state:

Tψ := inf{t � 0 : 〈ψ |e−itH/h̄|ψ〉 = 0}.
Inequality (1) is a kind of time–energy uncertainty relation. A shortcoming of this

uncertainty relation is that if the variance of the HamiltonianH does not exist, i.e. if�ψH = ∞,
then inequality (1) gives only the trivial estimate Tψ � 0 and is useless. A surprising result
of [4] is that inequality (1) still holds when the second moment (standard deviation) �ψH is
replaced by the first moment (average) 〈H 〉ψ :

Tψ 〈H 〉ψ � πh̄

2
. (2)

Inequality (2) is a different kind of time–energy uncertainty relation. It is useful when �ψH

is infinite while 〈H 〉ψ is finite. Further, [6] have identified the intelligent states for this kind
of uncertainty relation.

0305-4470/01/153289+03$30.00 © 2001 IOP Publishing Ltd Printed in the UK 3289



3290 S Luo

With the same theme, one may ask what the shortest distance is for a wavefunction to be
displaced to become orthogonal. A position–momentum analogue of inequality (1) is

Dψ�ψP � πh̄

2
. (3)

Here ψ ∈ L2(R, dx) is a Schrödinger wavefunction with unit norm, P = −ih̄ d
dx is the

momentum operator and

Dψ := inf{θ � 0 : 〈ψ |e−iθP/h̄|ψ〉 = 0}
is the smallest position displacement for ψ to become an orthogonal state (see [1, 2, 9] and
references therein). This is the position–momentum counterpart of inequality (1).

However, when�ψP = ∞, inequality (3) is useless. There are manyψ such that the first
moment of P in ψ is finite while the second moment of P in ψ is infinite. Motivated by [4],
we shall establish a position–momentum analogue of the time–energy inequality (2), or an
uncertainty relation similar to (3), but with the variance �ψP being replaced by the average.
The result (the subsequent inequality (4)) follows from an elementary inequality and a direct
use of Fourier analysis.

Let |P | =
√
P 2 (positive root) be the absolute of the momentum observable.

Mathematically, |P | may be defined via the Fourier transform as

|̂P |ψ(ξ) := |ξ |ψ̂(ξ).
Here the hat stands for the Fourier transform:

ψ̂(ξ) := 1√
2πh̄

∫
R

e−ixξ/h̄ψ(x) dx.

The average of |P | in the state ψ is

〈|P |〉ψ = 〈ψ ||P ||ψ〉 =
∫

R

|ξ ||ψ̂(ξ)|2 dξ.

The reason for considering the average of |P | rather than that of P is that the latter may be
negative.

Our main result is

Dψ 〈|P |〉ψ � πh̄

2a
(4)

where a ≈ 1.1383.
To prove inequality (4), note that

ψ(x) = 1√
2πh̄

∫
R

eixξ/h̄ψ̂(ξ) dξ

e−iθP/h̄ψ(x) = ψ(x − θ) = 1√
2πh̄

∫
R

ei(x−θ)ξ/h̄ψ̂(ξ) dξ

= 1√
2πh̄

∫
R

eixξ/h̄e−iθξ/h̄ψ̂(ξ) dξ.

Consequently, by the Parseval identity,

〈ψ |e−iθP/h̄|ψ〉 =
∫

R

ψ̂∗(ξ)e−iθξ/h̄ψ̂(ξ) dξ =
∫

R

e−iθξ/h̄|ψ̂(ξ)|2 dξ.

In the language of probability, 〈ψ |e−iθP/h̄|ψ〉 as a function of θ is exactly the characteristic
function (Fourier transform) of the probability density |ψ̂(ξ)|2. We want to evaluate the least
positive zero point.
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Let a > 0 be the smallest number such that

cosx � 1 − 2a

π
|x| x ∈ R. (5)

This a is easily determined as a = π
2 sinx∗ ≈ 1.1383, while x∗ ≈ 2.3311 ∈ [π2 , π ] is the

unique solution of 1 − xsinx = cosx. Geometrically, (x∗, cosx∗) = (x∗, 1 − 2a
π
x∗) is the

tangent point of the curve y = cosx and the line y = 1 − 2a
π
x, x � 0, in the interval [π2 .π ].

Thus we have

Re 〈ψ |e−iθP/h̄|ψ〉 =
∫

R

cos(−θξ/h̄)|ψ̂(ξ)|2 dξ

�
∫

R

(
1 − 2a

π
(θ |ξ |/h̄)

)
|ψ̂(ξ)|2 dξ (by (5))

= 1 − 2a

πh̄
θ〈|P |〉ψ.

When 〈ψ |e−iθP/h̄|ψ〉 = 0, we have Re 〈ψ |e−iθP/h̄|ψ〉 = 0. Consequently,

0 � 1 − 2a

πh̄
θ〈|P |〉ψ.

In order for ψ to be displaced to an orthogonal state e−iθP/h̄ψ , θ should satisfy the above
inequality. By the definition of Dψ , we obtain inequality (4).

Note that in the derivation of inequality (4), we have not made full use of the condition
〈ψ |e−iθP/h̄|ψ〉 = 0; we have only used the condition Re 〈ψ |e−iθP/h̄|ψ〉 = 0. On the other
hand, the right-hand side of inequality (4) differers from that of inequalities (1)–(3) by an
inverse factor a ≈ 1.1383.
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